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1
NANOWIRE PIN TUNNEL FIELD EFFECT
DEVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This is a divisional application of application Ser. No.
12/684,280, filed Jan. 8, 2010, which is incorporated by ref-
erence herein.

FIELD OF INVENTION

The present invention relates to semiconductor nanowire
tunnel devices.

DESCRIPTION OF RELATED ART

PIN (p-type semiconductor—intrinsic semiconductor—n-
type semiconductor) tunnel field effect transistor (FET)
devices include an intrinsic semiconductor channel region
disposed between a p-typed doped semiconductor region and
an n-typed doped semiconductor region that contact the chan-
nel region.

BRIEF SUMMARY

In one aspect of the present invention, a method for form-
ing a nanowire tunnel device includes forming a nanowire
suspended by a first pad region and a second pad region over
a semiconductor substrate, forming a gate structure around a
channel region of the nanowire, implanting a first type of ions
atafirst oblique angle in a first portion of the nanowire and the
first pad region, and implanting a second type of ions at a
second oblique angle in a second portion of the nanowire and
the second pad region.

In another aspect of the present invention, a nanowire tun-
nel device includes a nanowire suspended above a semicon-
ductor substrate by a first pad region and a second pad region,
the nanowire having a channel portion surrounded by a gate
structure disposed circumferentially around the nanowire, an
n-type doped region including a first portion of the nanowire
adjacent to the channel portion, and a p-type doped region
including a second portion of the nanowire adjacent to the
channel portion.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIGS. 1-9 illustrate an exemplary method for forming a
nanowire device.

DETAILED DESCRIPTION

With reference now to FIG. 1, a silicon on insulator (SOI)
portion 102 is defined on a buried oxide (BOX) layer 104 that
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2

is disposed on a silicon substrate 100. The SOI portion 102
includes an SOI pad region 106, an SOI pad region 108, and
nanowire portions 109. The SOI portion 102 may be patterned
by the use of lithography followed by an etching process such
as, for example, reactive ion etching (RIE).

FIG. 2 illustrates the resultant BOX layer 104 and SOI
portion 102 following an isotropic etching process. The BOX
layer 104 is recessed in regions not covered by SOI portion
102. The isotropic etching results in the lateral etching of
portions of the BOX layer 104 that are under the SOI portion
102. The lateral etch suspends the nanowire portions 109
above the BOX layer 104. The lateral etch forms the under-
cuts 202 in the BOX layer 104 and overhang portions 201 at
the edges of SOI regions 106 and 108. The isotropic etching
of'the BOX layer 104 may be, for example, performed using
a diluted hydrofluoric acid (DHF). A 100:1 DHF etches about
2 to 3 nm of BOX layer 104 per minute at room temperature.
Following the isotropic etching the nanowires portions 109
are smoothed to form nanowires 110 with for example, ellip-
tical or circular cross sections that are suspended above the
BOX layer 104 by the SOI pad region 106 and the SOI pad
region 108. The smoothing of the nanowires may be per-
formed by, for example, annealing of the nanowires 109 in
hydrogen. Example annealing temperatures may be in the
range of 600° C.-900° C., and ahydrogen pressure of approxi-
mately 7 to 600 Torr.

FIG. 3 illustrates the nanowires 110 following an oxidation
process that may be performed to reduce the cross-sectional
area of the nanowires 110. The reduction of the cross-sec-
tional area of the nanowires 110 may be performed by, for
example, an oxidation of the nanowires 110 followed by the
etching of the grown oxide. The oxidation and etching pro-
cess may be repeated to achieve a desired nanowire 110
cross-sectional area. Once the desired cross-sectional area of
the nanowires 110 have been reached, gates are formed over
the channel regions of the nanowires 110 (described below).

FIG. 4 illustrates gates 402 that are formed around the
nanowires 110, as described in further detail below, and
capped with a polysilicon layer (capping layer) 404. A hard-
mask layer 406, such as, for example silicon nitride (Si;N,,) is
deposited over the polysilicon layer 404. The polysilicon
layer 404 and the hardmask layer 406 may be formed by
depositing polysilicon material over the BOX layer 104 and
the SOI portion 102, depositing the hardmask material over
the polysilicon material, and etching by RIE to form the
polysilicon layer 404 and the hardmask layer 406. The etch-
ing of the gate 402 may be performed by directional etching
that results in straight sidewalls of the gate 402. Following the
directional etching, polysilicon 404 remains under the
nanowires 110 and outside the region encapsulated by the
gate 402. Isotropic etching may be performed to remove
polysilicon 404 from under the nanowires 110.

FIG. 5A illustrates a cross-gate 402 sectional view of a gate
402 along the line A-A (of FIG. 4). The gate 402 is formed by
depositing a first gate dielectric layer (high K layer) 502, such
as silicon dioxide (Si0O,) around the nanowire 110, and the
SOI pad regions 106 and 108. A second gate dielectric layer
(high K layer) 504 such as, for example, hafnium oxide
(HfO,) is formed around the first gate dielectric layer 502. A
metal layer 506 such as, for example, tantalum nitride (TaN)
is formed around the second gate dielectric layer 504. The
metal layer 506 is surrounded by polysilicon layer 404 (of
FIG. 4A). Doping the polysilicon layer 404 with impurities
such as boron (p-type), or phosphorus (n-type) makes the
polysilicon layer 404 conductive. The metal layer 506 is
removed by an etching process such as, for example, RIE
from the nanowire 110 that is outside of the channel region
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and the SOI pad regions 106 and 108, and results in the gate
402 and nanowire 110 having the first gate dielectric layer
(high K layer) 502, around the nanowire 110 and the second
gate dielectric layer (high K layer) 504 formed around the first
gate dielectric layer 502. FIG. 5B illustrates a cross sectional
view of a portion of the nanowire 110 along the line B-B (of
FIG. 4).

FIG. 6 illustrates the spacer portions 604 formed along
opposing sides of the polysilicon layer 404. The spacers are
formed by depositing a blanket dielectric film such as silicon
nitride and etching the dielectric film from the horizontal
surfaces by RIE. The spacer walls 604 are formed around
portions of the nanowire 110 that extend from the polysilicon
layer 404 and surround portions of the nanowires 110. FIG. 6
includes spacer portions 602 that are formed under the
nanowires 110, and in the undercut regions 202 (of FIG. 2).
Following the formation of the spacer portions 604, the high
K layers 502 and 504 may be removed by, for example, a
selective etching process, and silicon may be epitaxially
grown on the exposed nanowires 110 and SOI pad regions
106 and 108. The epitaxially grown silicon (epi-silicon) 606
layer increases the diameter of the nanowires 110 and the
dimensions of the SOI pad regions 106 and 108. The epi-
silicon 606 may be formed by epitaxially growing, for
example, silicon (Si), a silicon germanium (SiGe), or germa-
nium (Ge). As an example, a chemical vapor deposition
(CVD) reactor may be used to perform the epitaxial growth.
Precursors for silicon epitaxy include SiCl,, SiH, combined
with HCL. The use of chlorine allows selective deposition of
silicon only on exposed silicon surfaces. A precursor for SiGe
may be GeH,, which may obtain deposition selectivity with-
out HCL. Deposition temperatures may range from 550° C. to
1000° C. for pure silicon deposition, and as low as 300° C. for
pure Ge deposition.

FIG. 7 illustrates a cross-sectional view of FIG. 6 following
the formation of the spacers 604 and the epi-silicon 606. In the
illustrated embodiment, regions of the exposed epi-silicon
606 are doped with n-type ions 702 that are implanted at an
angle (o), the angle o may, for example, range from 5-50
degrees. The implantation of the n-type ions 702 at the angle
a exposes the SOI pad regions 106 and 108 and the nanowire
110 one side of the device to the n-type ions 702 to form an
n-type doped region 703 in the epi-silicon 606 adjacent to the
gate 402, while a region 705 of the opposing side remains
unexposed to the n-type ions 702 due to the height and posi-
tion of the polysilicon layer 404, the spacers 604, and the
hardmask layer 406.

FIG. 8illustrates a cross-sectional view of the device. In the
illustrated embodiment regions of the exposed epi-silicon
606 are implanted with p-type ions 802 at an angle (f8); the
angle § may, for example, range from 5-50 degrees. The
implantation of the ions 802 at the angle 3 in the epi-silicon
606 on the SOI pad regions 108 and 106 and the adjacent
nanowire 110 form a p-type doped region 803 in the region
705 (of FIG. 7) adjacent to the gate 402; while the opposing
(n-type doped region 703) remains unexposed to the p-type
ions 802. Portions of the SOI pad regions 106 and 108 that do
not include the regions 703 and 803 may include both n-type
and p-type ions; the regions with both types of ions do not
appreciably effect the operation of the device.

Once the ions 702 and 802 are implanted, an annealing
process is performed to overlap the device and activate the
dopants. The annealing process results in a shallow doping
gradient of n-type ions and p-type ions in the channel region
of the device.

FIG. 9 illustrates the resultant structure following silicida-
tion where a silicide 902 is formed on the over the polysilicon
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layer 404 (the gate region G) and over the n-type doped region
(N) 703 and the p-typed doped region (P) 803. Examples of
silicide forming metals include Ni, Pt, Co, and alloys such as
NiPt. When Ni is used the NiSi phase is formed due to its low
resistivity. For example, formation temperatures include 400-
600° C. Once the silicidation process is performed, capping
layers and vias for connectivity (not shown) may be formed
and a conductive material such as, Al, Au, Cu, or Ag may be
deposited to form contacts 904.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one ore more other features, integers, steps, operations,
element components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated

The diagrams depicted herein are just one example. There
may be many variations to this diagram or the steps (or
operations) described therein without departing from the
spirit of the invention. For instance, the steps may be per-
formed in a differing order or steps may be added, deleted or
modified. All of these variations are considered a part of the
claimed invention.

While the preferred embodiment to the invention had been
described, it will be understood that those skilled in the art,
both now and in the future, may make various improvements
and enhancements which fall within the scope of the claims
which follow. These claims should be construed to maintain
the proper protection for the invention first described.

What is claimed is:

1. A nanowire tunnel device, comprising:

a nanowire spaced apart and above a semiconductor sub-
strate by a first pad region and a second pad region, the
nanowire having a channel portion surrounded by a gate
structure disposed circumferentially around the nanow-
ire, the gate structure comprising a metal layer and a
conductive polysilicon capping layer disposed directly
onto and encapsulating the metal layer;

a first protective spacer adjacent to a sidewall of the gate
structure and around portions of the nanowire extending
from the gate structure;

a second protective spacer adjacent to the first protective
spacer, the second protective spacer is formed and fills a
space between an exposed region of the nanowire and
the semiconductor substrate;

an n-type doped region including a first portion of the
nanowire adjacent to the channel portion; and
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a p-type doped region including a second portion of the
nanowire adjacent to the channel portion.

2. The device of claim 1, wherein the gate structure
includes a silicon oxide layer disposed on the channel portion
of the nanowire, a dielectric layer disposed on the silicon
oxide layer, and a metal layer disposed on the dielectric layer.

3. The device of claim 1, wherein the first portion of the
nanowire, the second portion of the nanowire, the first pad
region, and the second pad region include silicon material.

4. The device of claim 1, wherein the first portion of the
nanowire, the second portion of the nanowire, the first pad
region, and the second pad region include epitaxially grown
material.

5. The device of claim 4,
material is silicon.

6. The device of claim 4,
material is a SiGe alloy.

7. The device of claim 4,
material is Ge.

8. The device of claim 4,
material is doped silicon.

9. The device of claim 4, wherein the epitaxially grown
material is a doped SiGe alloy.

10. The device of claim 4, wherein the epitaxially grown
material is doped Ge.

11. The device of claim 1, wherein further comprising a
silicide material on the first pad region, the second pad region,
the first portion of the nanowire, the second portion of the
nanowire, and the gate structure.

12. The device of claim 1, further comprising conductive
contacts on the first pad region, the second pad region, the first
portion of the nanowire, the second portion of the nanowire,
and the gate structure.

13. The device of claim 1, wherein the first protective
spacer includes a nitride material.

14. The device of claim 1, wherein the conductive polysili-
con capping layer is doped with p-type or n-type impurities.

15. The device of claim 1, further comprising a hard mask
layer disposed onto the conductive polysilicon capping layer.

16. A nanowire tunnel device, comprising:

a nanowire spaced apart and above a semiconductor sub-
strate by a first pad region and a second pad region, the
nanowire having a channel portion surrounded by a gate
structure disposed circumferentially around the nanow-
ire, the gate structure comprising a metal layer and a
conductive polysilicon capping layer disposed directly
onto and encapsulating the metal layer;

wherein the epitaxially grown
wherein the epitaxially grown
wherein the epitaxially grown

wherein the epitaxially grown
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a first protective spacer adjacent to a sidewall of the gate
structure and around portions of the nanowire extending
from the gate structure;

a second protective spacer adjacent to the first protective
spacer, the second protective spacer is formed and fills a
space between an exposed region of the nanowire and
the semiconductor substrate;

an n-type doped region including a first portion of the
nanowire adjacent to the channel portion; and

a p-type doped region including a second portion of the
nanowire adjacent to the channel portion, wherein the
first portion of the nanowire, the second portion of the
nanowire, the first pad region, and the second pad region
include epitaxially grown material.

17. The device of claim 16, wherein the gate structure
includes a silicon oxide layer disposed on the channel portion
of the nanowire, a dielectric layer disposed on the silicon
oxide layer, and a metal layer disposed on the dielectric layer.

18. The device of claim 16, wherein the first portion of the
nanowire, the second portion of the nanowire, the first pad
region, and the second pad region include silicon material.

19. The device of claim 16, wherein the epitaxially grown
material is Ge.

20. A nanowire tunnel device, comprising:

a nanowire spaced apart and above a semiconductor sub-
strate by a first pad region and a second pad region, the
nanowire having a channel portion surrounded by a gate
structure disposed circumferentially around the nanow-
ire, the gate structure comprising a metal layer, a con-
ductive polysilicon capping layer disposed directly onto
and encapsulating the metal layer, and a silicon nitride
hardmask layer disposed directly onto the polysilicon
capping layer;

a first protective spacer adjacent to a sidewall of the gate
structure and around portions of the nanowire extending
from the gate structure;

a second protective spacer adjacent to the first protective
spacer, the second protective spacer is formed and fills a
space between an exposed region of the nanowire and
the semiconductor substrate;

an n-type doped region including a first portion of the
nanowire adjacent to the channel portion; and

a p-type doped region including a second portion of the
nanowire adjacent to the channel portion.
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